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Abstract. Rain Streaks in a single image can severely damage the visual
quality, and thus degrade the performance of current computer vision al-
gorithms. To remove the rain streaks effectively, plenty of CNN-based
methods have recently been developed, and obtained impressive perfor-
mance. However, most existing CNN-based methods focus on network
design, while rarely exploits spatial correlations of feature. In this pa-
per, we propose a deep self-attentive pyramid network (SAPN) for more
powerful feature expression for single image de-raining. Specifically, we
propose a self-attentive pyramid module (SAM), which consists of con-
volutional layers enhanced by self-attention calculation units (SACUs)
to capture the abstraction of image contents, and deconvolutional lay-
ers to upsample the feature maps and recover image details. Besides,
we propose self-attention based skip connections to symmetrically link
convolutional and deconvolutional layers to exploit spatial contextual in-
formation better. To model rain streaks with various scales and shapes, a
multi-scale pooling (MSP) module is also introduced to efficiently lever-
age features from different scales. Extensive experiments on both syn-
thetic and real-world datasets demonstrate the effectiveness of our pro-
posed method in terms of both quantitive and visual quality.

Keywords: Rain streak removal · Encoder-decoder network · Self-attention.

1 Introduction

Images captured in rain weather are common in real life, thus resulting in im-
ages with rain streaks. Such rain streaks would not only affect the visual quality
of images, but degrade performance of existing computer vision systems, such
as self-driving, video surveillance, and object detection. Therefore, it is of cru-
cial importance to remove rain streaks while recovering image details. Image
de-raining has received much attention in recent years, and can be generally di-
vided into video-based [1–4] and single image based methods [5–10]. Most video
based methods focus on utilizing the temporal correlations in successive frames,

⋆ * Equal contribution.
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(a) Input (b) DDN (c) DID-MDN (d) PReNet (e) Ours

Fig. 1: Sample de-raining results on real-world rainy scenes with long heavy rain
streaks. The details in enlarged regions shows that our SAPN removes long
heavy rain streaks more cleanly, while keeps the sharp details of the background
objects. The two rows demonstrate that our self-attentive network produces
better de-raining results on image regions with long heavy rain streaks.

which provide extra temporal information of the rainy scene. In contrast, it is
more challenging to perform single image de-raining due to the very limited
information from a single image.

In recent years, many single image de-raining methods [5–8, 10] have been
proposed. Most traditional image de-raining methods focus on exploiting power-
ful image prior of rainy images, including sparse prior [7], low rank prior [11] and
Gaussian mixture model (GMM) prior [6]. Among them, Luo et al. [5] proposed
a dictionary learning based method, which sparsely approximates the patches
of the rain layer and the de-rained layer by discriminative sparse codes with a
learned dictionary. Li et al. [6] further introduced patch-based Gaussian mixture
model (GMM) priors for both the background layer and the rain layer. Zhu et al.
[7] introduced three types of priors, and proposed a joint optimization process to
alternately remove rain-streak details. However, since such methods rely heavily
on handcrafted feature and fixed priors, they are limited in practice due to the
diversity of rain streaks (e.g., various shapes, scales and density levels).

Due to the powerful feature representation capability, convolutional neural
networks have been widely used in image de-raining, and obtained remarkable
performance. For example, Fu et al. [8] proposed a deep detail network to learn
the high frequency details during training, since most rain streaks belong to high-
frequency information. To consider various shapes and density of rain drops,
Zhang et al. [10] proposed a densely connected network with learned rain streak
density information to assist rain streak removal process. Since spatial contextual
information is important for rain streaks removal, some methods [12, 13] have
been developed. Specifically, Li et al. [12] proposed a multi-stage dilated CNN
network to obtain a large receptive field size. Recently, Ren et al. [14] proposed
a progressive recurrent network (PReNet) to better take advantage of recursive
computation and exploit the dependencies of deep features across stages.

Although significant progress has been achieved for single image de-raining,
most of existing CNN-based methods focus on the network design, while rarely
considering the inherent spatial correlations in feature maps. Meanwhile, self-

2 ICONIP2019, 634, v6: ’Self-Attentive Pyramid Network for Single Image De-raining’
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Fig. 2: Framework of Our Self-Attentive Pyramid Network (SAPN)

attention [15] exploits spatial correlations of features by using attention scores to
weight all features to obtain salient features. To make full use of the spatial corre-
lations of features, we propose a deep self-attentive pyramid network (SAPN) for
single image de-raining, which mainly consists of self-attentive pyramid module
(SAM) and multi-scale pooling (MSP) module. Specifically, to efficiently exploit
spatial contextual information, we propose the self-attention calculation units
(SACUs) based encoding layers to enhance the encoding process, and SACUs
based skip connections to enhance the symmetrical decoding process. With the
assistance of SACUs, the encoding layers can better utilize the spatial correla-
tions from input features. Besides, our SACUs based skip connections can not
only contribute to the propagation of gradient flows, but pass the enhanced
original feature signal from convolutional layers to symmetrical deconvolutional
layers directly, which is helpful for recovering image details. Furthermore, since
feature pyramid is helpful for multi-resolution feature representation, we apply
multi-scale pooling in the shallow layers of our network. Extensive experiments
on synthetic and real-world datasets demonstrate the superiority of our proposed
method in terms of both quantitive and visual quality.

2 Self-attentive pyramid network (SAPN)

2.1 Network Architecture

As shown in Fig. 2, our SAPN consists of four main parts: multi-scale pooling
module, shallow feature extraction, self-attentive pyramid module (SAM) and
feature reconstruction.

Multi-scale pooling Module. Given I as input rainy image and R̂ as
estimated rain streak image, then the output of SAPN is represented as follows:

Ô = I − R̂, (1)

ICONIP2019, 634, v6: ’Self-Attentive Pyramid Network for Single Image De-raining’ 3
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where Ô denotes the estimated de-rained output image. To model rain streaks
with various scales and shapes from the input image I, we firstly introduce a
multi-scale pooling operation Hmsp(·) to get the multi-scale feature concatena-
tion Fmsp from I:

Fmsp = Hmsp(I)

= [S32×32
1 (I), S16×16

2 (I), S8×8
3 (I), S4×4

4 (I), I],
(2)

where [·, ·, ..., ·] denotes channel-wise concatenation and Sk×k
i (·) represents the

i-th k × k-scale pooling operation which is defined as:

Sk×k
i (I) = Uk×k(ReLU(Conv1×1(Dk×k(I)))), (3)

where Dk×k(·) and Uk×k(·) denote k × k-scale downsampling and upsampling
respectively. Conv1×1(·) denotes a 1× 1 convolutional layer.

Shallow feature extraction. After we get multi-scale feature concatenation
Fmsp from Equ. (3), the shallow feature representation Ffr can be obtained by

Ffr = Hex(Fmsp), (4)

where Hex(·) represents two consecutive 3×3 convolutional layers with 64 filters
respectively, which are designed to extract the shallow feature representation
Ffr from Fmsp.

Self-attentive pyramid module (SAM). Given the shallow feature rep-
resentation Ffr obtained from the above step, the self-attentive pyramid module
(SAM), denoted as Hsam(·), adopts a pyramid encoder-decoder structure with
Self-attention Calculation Units (SACU) embedded in it, and produce a rain
streak layer feature representation Frs:

Frs = Hsam(Ffr). (5)

The detailed description of SAM is given in Section 2.2.
Feature reconstruction part. After obtaining the rain streak layer feature

representation Frs, we can reconstruct the estimated rain streak R̂ using the
feature reconstruction part Hrc(·), which is actually a 3× 3 convolutional layer:

R̂ = Hrc(Frs) = Hsapn(I), (6)

where Hsapn(·) represents the function of our proposed SAPN.
Loss function. During the training process, our SAPN is optimized with

loss function. To improve not only the pixel-wise reconstruction but the high-
level semantic representation, we add perceptual loss to pixel-level L1 loss to get
the combined loss LC :

LC = LL1 + λLP , (7)

where λ denotes the trade-off coefficient between the two losses, and the L1 loss
LL1 and the perceptual loss LP are defined as:

LL1 =
1

CWH

C∑

c=1

W∑

w=1

H∑

h=1

‖Ôc,w,h −Oc,w,h‖1, (8)

4 ICONIP2019, 634, v6: ’Self-Attentive Pyramid Network for Single Image De-raining’



Self-Attentive Pyramid Network for Single Image De-raining 5

LP =
1

CWH

C∑

c=1

W∑

w=1

H∑

h=1

‖(V (Ô))c,w,h − (V (O))c,w,h‖22, (9)

where C, W and H denote the channel, width and height dimension of the esti-
mated de-rained image Ô and the ground truth clean image O. V (·) represents
the front layers of a pretrained VGG model which is regarded as the high-level
feature extractor. The loss function is optimized by Adam optimizer.

After a full glance at the framework of the proposed SAPN, we can conclude
that the deep feature representation in our SAPN heavily relies on the self-
attentive pyramid module (SAM), which will be shown in the next section.

2.2 Self-attentive Pyramid Module (SAM)

Our SAM is based on the conventional encoder-decoder networks [16], which are
widely used in image-to-image tasks. However, most existing encoder-decoder
based networks focus on the network design, while rarely exploits the spatial
correlations of features and thus limits representation capability of the network.
To exploit such correlations inherent in features, we propose a novel self-attentive
pyramid module (SAM).

As shown in Fig. 2, the core component of SAPN is self-attentive Pyramid
Module (SAM), which is further composed of four Self-attention Calculation
Units (SACUs), four encoders and four decoders. The detailed description of
SACU will be given in the next section.

Given the feature representation Ffr obtained from shallow feature extrac-
tion step Hex(·), the original U-net [16] simply encodes the features iteratively
and feeds the encoded features to symmetrical decoder. However, the single en-
coding layer, which consists of several convolutional layers, can not fully utilize
the spatial correlations of the features,thus leading to poor ability of modeling
the long-range dependency inherent in the features. Given this, we embed self-
attention calculation unit (SACU) Hsa,i(·) in each encoder Hen,i(·) to model
the long-range spatial correlations, and thus the encoded features are enhanced
before passing through the decoding layer. i-th encoder Hen,i(·) is composed of a
3×3 convolutional layer with stride 2 and doubled channels from input, and two
3×3 layers with ReLU activation, which keeps input channels. We can formulate
the self-attentive encoding part of the SAM component Hsam(·) as:

Fsa,i = Hsa,i−1(Fen,i−1),

Fen,i = Hen,i(Fsa,i), i = 1, 2, 3, 4,
(10)

where Fsa,i denotes the output of i-th SACU and Fen,i denotes the output of
i-th encoder. Fen,0 denotes Ffr for convenience. With the help of self-attention
information obtained from the SACU, the encoding process can be enhanced to
get more spatial correlation into consideration.

After the self-attentive encoding part, we obtain Fsa,i plus the final output
(i.e. Fen,4) of encoders as the input of following decoding part. Unlike the pyra-
mid network and U-net, which directly utilize the symmetrical encoded features

ICONIP2019, 634, v6: ’Self-Attentive Pyramid Network for Single Image De-raining’ 5
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Fen,4−i from skip connection as the extra information:

Fde,i = Hde,i([Fde,i−1, Fen,4−i]), (11)

we adopt the extra self-attention information besides the original encoded fea-
tures Fen,4−i, which is integrated in features Fsa,4−(i−1), to decoder Hde,i(·) to
get output features Fde,i. Similar with the encoder design, i-th decoder Hde,i(·)
starts with a 3 × 3 deconvolutional layer with stride 2 and keeps the channels,
followed by two consecutive 3× 3 layers with ReLU activation which halves the
channels in the former layer. Specifically, we utilize the obtained self-attention
Fsa,i to enhance the decoding process, which can be formulated as:

Fde,i = Hde,i([Fde,i−1, Fsa,4−(i−1)]), (12)

where Fde,4, the output features of the last decoder, is also the final output of
SAM and input of feature reconstruction layer, which is also denoted as Frs.
Fde,0, or Fen,4, is the output features of the last encoding layer and also the
input of the first decoding layer. Through the skip connection which delivers
the output self-attention Fsa,4−(i−1) of (4 − i)-th SACU (i.e. Hsa,4−(i−1)(·)),
the i-th decoder Hde,i(·) can get not only the symmetrical features but their
self-attention information directly since the skip connection structure in SACU.
With the help of the extra self-attention information of features, the decoding
process can be further enhanced with the spatial correlation provided by the self-
attention information, which makes the representation of long-range dependency
possible. The experiments in Section 3 demonstrate the performance gain of
the utilization of the extra self-attention information. We will give a further
explanation to the self-attention calculation unit (SACU) in the next section.

2.3 Self-attention Calculation Unit (SACU)

Self-attention focuses on the attention of feature maps towards themselves, which
has been widely researched by previous works [15, 17]. The information provided
by self-attention properly handles the problem that long-range feature depen-
dency can not be efficiently convolved by the convolutional layers.

6 ICONIP2019, 634, v6: ’Self-Attentive Pyramid Network for Single Image De-raining’
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Fig. 3: Self-attention Calculation Unit (SACU)

As shown in Fig. 3, given the output features Fen,i of i-th encoder Hen,i(·),
we firstly obtain three embedding representation θ(Fen,i), φ(Fen,i), g(Fen,i) from
three different 1 × 1 convolutional layers θ(·), φ(·) and g(·). Then the self-
correlation Fsc,i of feature map Fen,i can be obtained via

Fsc,i = θ(Fen,i)φ(Fen,i)
T. (13)

Then, we can get the self-weights F
′
sc,i by softmaxing each row of Fsc,i, and use

it to weight the embedding representation θ(Fen,i) by:

F
′
sa,i+1 = F

′
sc,ig(Fen,i). (14)

After that, the self-attention map F
′′
sa,i+1 is obtained via a further 1× 1 convo-

lutional layer h(·).
Furthermore, to boost the gradient transmission and avoid the gradient van-

ishing problem, we add skip connection from the input Fen,i to the calculated

self-attention map F
′′
sa,i+1. To better calibrate the influence between them, unlike

the original non-local implementation [17], which regards the balance between
the two terms as a hyper-parameter, we bring in a learnable parameter α as a
trade-off weight. The final output Fsa,i+1 of SACU can be formulated as:

Fsa,i+1 = Fen,i + αF
′′
sa,i+1. (15)

With the learnable parameter α, the weighting of the self-attention information
becomes more flexible and thus leads to better utilization of self-attention.

3 Experiments

To validate the advantage of our method, we conduct tremendous experiments on
various synthetic datasets and natural rainy images. Since the ground truth im-
ages are available in synthetic datasets, PSNR and SSIM are adopted as the eval-
uation criterion of the de-raining results. We calculate PSNR/SSIM in luminance

ICONIP2019, 634, v6: ’Self-Attentive Pyramid Network for Single Image De-raining’ 7
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channel of YCbCr space. Additionally, we compare our proposed SAPN with
state-of-the-art de-raining methods, including Deep Detailed Network (DDN)
[8], Joing Rain Detection and Removal (JORDER) [9], Density-aware Single
Image De-raining using a Multi-stream Dense Network (DID-MDN) [10] and
Progressive Recurrent Network (PReNet) [14].

3.1 Datasets

Synthetic Datasets To make a comparison with previous state-of-the-art de-
raining approaches, we adopt three public benchmark synthetic datasets to train
and evaluate our SAPN, including DDN-Dataset [8], DID-MDN-Dataset [10] and
Rain100H [9]. Specifically, DDN-Dataset contains 14,000 rainy-clean image pairs
which is synthesized by 1000 clean images. We randomly select 9100 image pairs
as training dataset and use the left 4900 image pairs as the testing dataset. DID-
MDN-Dataset is composed of 12000 training rainy-clean image pairs and 1201
testing image pairs. Rain100H contains 100 testing images and there are 1800
training image pairs in the corresponding training dataset (i.e. RainTrainH).

Real-world images To validate the effectiveness of the proposed network
in real world rainy scenes, we randomly select some images from the previous
de-raining works [8, 9, 18, 19] and the internet.

3.2 Training Details

Table 1: Quantitative results of average PSNR(dB)/SSIM compared with state-
of-the-art de-raining works. The two best-performing methods are marked in
bold and underlined respectively.

Dataset Matric Input
DDN [8]

(CVPR’17)
JORDER [9]
(CVPR’17)

DID-MDN [10]
(CVPR’18)

Our
SAPN

DID-MDN-Dataset
PSNR(dB) 23.63 30.08 26.80 29.36 30.86

SSIM .7313 .8788 .8361 .9002 .9230

DDN-Dataset
PSNR(dB) 23.74 30.00 26.47 28.00 30.26

SSIM .7499 .8932 .8276 .8776 .9110

Rain100H
PSNR(dB) 13.56 22.26 26.10 26.35 27.06

SSIM .3800 .6928 .7971 .8287 .8474

For each of the three datasets, we train our SAPN on a 1080 ti GPU on the
training dataset, and evaluate the model on corresponding testing dataset. We
train our model for 300, 350 and 50 epochs for DID-MDN-Train, DDN-Train, and
RainTrainH respectively. The initial learning rate is set to 2 ·10−4 and decreased
linearly at the end of every epoch. To avoid the problem of over-fitting, we use a

8 ICONIP2019, 634, v6: ’Self-Attentive Pyramid Network for Single Image De-raining’
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PSNR (dB) / SSIM

Ground Truth

19.06 / .6003

Input

27.87 / .8769

DDN [8]

22.16 / .7415

JORDER [9]

26.86 / .8765

DID-MDN [10]

29.60 / .9268

Our SAPN

Fig. 4: De-raining results on sample image from DDN-Testset.

PSNR (dB) / SSIM

Ground Truth

14.11 / .3528

Input

18.19 / .4836

DDN [8]

26.04 / .7741

JORDER [9]

17.76 / .5940

DID-MDN [10]

31.13 / .8877

Our SAPN

Fig. 5: De-raining results on sample image from Rain100H.
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Input DDN [8] JORDER [9]

DID-MDN [10] PReNet [14] Our SAPN

Fig. 6: De-raining results on sample real-world image.

weight decay of 10−5 and Adam optimizer with betas 0.5 and 0.999. The model
is trained on the Pytorch framework.

3.3 Results on Synthetic Datasets

The details of evaluation results on synthetic datasets are shown in Table 1. Note
that the the pretrained model of PResNet [14] is trained from other datasets,
thus we did not report the quantitative results for fair comparison. Results show
that our method outperforms other state-of-the-arts consistently. This is mainly
because our SAPN utilizes both multi-scale information and spatial correlations
of features, which enhances the feature representation capability of the network.
In contrast, DDN [8] learns the mapping from high-frequency details of rainy
images to clean ones with ResNet [20], while DID-MDN [10] utilize multi-scale
features and multi-stream DenseNet [18] architecture, both of which do not take
spatial correlations inherent in features into consideration.

Besides the quantitative evaluation on synthetic datasets, we also randomly
select several images from the testing datasets to validate the vistual effect.
As shown in Fig. 4 and Fig. 5, our method obtains better visual results. For
example, the alphabets in enlarged region in Fig. 4 are clearly recovered by our
SAPN, while other methods fail to remove long heavy rain streaks or bring in
unpleasant artifacts. Another sample in Fig. 5 also show that our SAPN keeps the
background scenes better and removes the rain streaks more cleanly, especially
when the image has some long rain streaks or other objects with long shapes,
since the adoption of self-attention mechanism enhances the capability of the
network to capture long-range dependency and non-local similarity.

3.4 Qualitative Evaluation on Real-world Images

To verify the performance gain of SAPN over previous methods on rainy scenes
in real world, we also test our SAPN and other methods on real-world images.

10 ICONIP2019, 634, v6: ’Self-Attentive Pyramid Network for Single Image De-raining’



Self-Attentive Pyramid Network for Single Image De-raining 11

The de-raining results on a randomly selected real world image sample is shown
in Fig. 6. Noticeably, our method achieves extremely better results when the
rain streaks in rainy image are longer than average, just because we adopt self-
attention mechanism in our network design, which can better leverage non-local
similarity of input rainy image and attain long-range dependency more effectively
and more efficiently. This specialty of our SAPN helps locate rainy areas in input
rainy images, leading to better final de-raining results. It is clearly shown in Fig. 6
that our SAPN produces preferable results compared with other methods, which
tend to either under de-rain or over de-rain the natural rainy images. Specifically,
all other four methods fail to remove all long rain streaks, while JORDER even
brings in severe artifacts. In contrast, our method not only removes more rain
streaks, but preserves background details better.

3.5 Ablation Study

To verify benefits of each individual component, including multi-scale pooling
(MSP) module and SACUs, we train some variants of our SAPN on RainTrainH
and evaluate trained models on Rain100H. The results are shown in Table 2.

Table 2: Ablation study of our proposed SAPN on SACUs and multi-scale pool-
ing module on Rain100H.

Methods Ua Ub Uc Ud

SACUs? X X
MSP? X X

PSNR(dB) 26.78 26.95 26.89 27.06

We can conclude that the adoption of SACUs effectively promotes the de-
raining results of the basic pyramid encoder-decoder network (Ua), while MSP
also improves the performance of the network effectively. The combination of
SACUs and MSP leads to our final SAPN architecture (Ud).

4 Conclusion

In this paper, we propose a pyramid encoder-decoder network with self-attention
calculation units for single image de-raining. Compared with previous methods
which does not exploit spatial correlations of features, our method explicitly
learns the self-correlation inherent in output features of each encoder layer,
making the encoding and symmetrical decoding process more self-attentive and
better resolve the long-range dependency problem in images, leading to better
eventual de-raining results, especially in long rain streaks conditions. In order
to further improve the de-raining results, we add a multi-scale pooling module
before feature extraction, which leads to even higher quantitative performance
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and much better visual experience. Tremendous experiments on various datasets
validate that our network outperforms the state-of-the-art methods.
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